通过代码 profiling,我们可以分析函数执行时间和资源使用情况,找出性能瓶颈并进行优化。使用 runtime/pprof 工具生成 profiling 报告。使用 pprof 工具分析报告,找出性能瓶颈。优化技巧:缩短执行时间、减少内存分配、优化数据结构。实战案例中,通过循环优化 fibonacci 函数,提升了其性能。
GoLang 函数性能优化之道:代码 Profiling 实践
在 GoLang 中提升函数性能至关重要,而代码 Profiling 便是一种行之有效的方法,它通过分析函数执行时间和资源使用情况,帮助我们找出性能瓶颈并进行有针对性的优化。
如何进行代码 Profiling
GoLang 内置了一个强大的 Profiling 工具包 runtime/pprof,我们可以使用它轻松地生成 Profiling 报告:
import ( "os" "runtime/pprof" ) func fibonacci(n int) int { if n <= 1 { return 1 } return fibonacci(n-1) + fibonacci(n-2) } func main() { f, _ := os.Create("profile.prof") defer f.Close() pprof.StartCPUProfile(f) defer pprof.StopCPUProfile() fibonacci(40) }