传递闭包算法解析:深度优先搜索 vs 广度优先搜索
引言:
传递闭包算法是图论中一个重要的算法,用于构建关系图的传递闭包。而在实现传递闭包算法时,常见的两种搜索策略是深度优先搜索(DFS)和广度优先搜索(BFS)。本文将详细介绍这两种搜索策略,并通过具体的代码示例来解析它们在传递闭包算法中的应用。
一、深度优先搜索(DFS):
深度优先搜索是一种先探索深度节点,再回溯到更浅层节点的搜索策略。在传递闭包算法中,我们可以利用DFS来构建关系图的传递闭包。下面我们通过以下示例代码来说明DFS在传递闭包算法中的应用:
# 传递闭包算法-深度优先搜索
def dfs(graph, start, visited):
visited[start] = True
for neighbor in graph[start]:
if not visited[neighbor]:
dfs(graph, neighbor, visited)
def transitive_closure_dfs(graph):
num_nodes = len(graph)
closure_table = [[0] * num_nodes for _ in range(num_nodes)]
for node in range(num_nodes):
visited = [False] * num_nodes
dfs(graph, node, visited)
for i in range(num_nodes):
if visited[i]:
closure_table[node][i] = 1
return closure_table




